Перевод: с английского на все языки

со всех языков на английский

(using infra-red

  • 1 infra-red

    adjective
    * * *
    [infrə'red]
    ((of rays) below the red end of the spectrum.) infrarot
    * * *
    adjective
    * * *
    adj.
    infrarot adj.

    English-german dictionary > infra-red

  • 2 Talbot, William Henry Fox

    [br]
    b. 11 February 1800 Melbury, England
    d. 17 September 1877 Lacock, Wiltshire, England
    [br]
    English scientist, inventor of negative—positive photography and practicable photo engraving.
    [br]
    Educated at Harrow, where he first showed an interest in science, and at Cambridge, Talbot was an outstanding scholar and a formidable mathematician. He published over fifty scientific papers and took out twelve English patents. His interests outside the field of science were also wide and included Assyriology, etymology and the classics. He was briefly a Member of Parliament, but did not pursue a parliamentary career.
    Talbot's invention of photography arose out of his frustrating attempts to produce acceptable pencil sketches using popular artist's aids, the camera discura and camera lucida. From his experiments with the former he conceived the idea of placing on the screen a paper coated with silver salts so that the image would be captured chemically. During the spring of 1834 he made outline images of subjects such as leaves and flowers by placing them on sheets of sensitized paper and exposing them to sunlight. No camera was involved and the first images produced using an optical system were made with a solar microscope. It was only when he had devised a more sensitive paper that Talbot was able to make camera pictures; the earliest surviving camera negative dates from August 1835. From the beginning, Talbot noticed that the lights and shades of his images were reversed. During 1834 or 1835 he discovered that by placing this reversed image on another sheet of sensitized paper and again exposing it to sunlight, a picture was produced with lights and shades in the correct disposition. Talbot had discovered the basis of modern photography, the photographic negative, from which could be produced an unlimited number of positives. He did little further work until the announcement of Daguerre's process in 1839 prompted him to publish an account of his negative-positive process. Aware that his photogenic drawing process had many imperfections, Talbot plunged into further experiments and in September 1840, using a mixture incorporating a solution of gallic acid, discovered an invisible latent image that could be made visible by development. This improved calotype process dramatically shortened exposure times and allowed Talbot to take portraits. In 1841 he patented the process, an exercise that was later to cause controversy, and between 1844 and 1846 produced The Pencil of Nature, the world's first commercial photographically illustrated book.
    Concerned that some of his photographs were prone to fading, Talbot later began experiments to combine photography with printing and engraving. Using bichromated gelatine, he devised the first practicable method of photo engraving, which was patented as Photoglyphic engraving in October 1852. He later went on to use screens of gauze, muslin and finely powdered gum to break up the image into lines and dots, thus anticipating modern photomechanical processes.
    Talbot was described by contemporaries as the "Father of Photography" primarily in recognition of his discovery of the negative-positive process, but he also produced the first photomicrographs, took the first high-speed photographs with the aid of a spark from a Leyden jar, and is credited with proposing infra-red photography. He was a shy man and his misguided attempts to enforce his calotype patent made him many enemies. It was perhaps for this reason that he never received the formal recognition from the British nation that his family felt he deserved.
    [br]
    Principal Honours and Distinctions
    FRS March 1831. Royal Society Rumford Medal 1842. Grand Médaille d'Honneur, L'Exposition Universelle, Paris, 1855. Honorary Doctorate of Laws, Edinburgh University, 1863.
    Bibliography
    1839, "Some account of the art of photographic drawing", Royal Society Proceedings 4:120–1; Phil. Mag., XIV, 1839, pp. 19–21.
    8 February 1841, British patent no. 8842 (calotype process).
    1844–6, The Pencil of Nature, 6 parts, London (Talbot'a account of his invention can be found in the introduction; there is a facsimile edn, with an intro. by Beamont Newhall, New York, 1968.
    Further Reading
    H.J.P.Arnold, 1977, William Henry Fox Talbot, London.
    D.B.Thomas, 1964, The First Negatives, London (a lucid concise account of Talbot's photograph work).
    J.Ward and S.Stevenson, 1986, Printed Light, Edinburgh (an essay on Talbot's invention and its reception).
    H.Gernsheim and A.Gernsheim, 1977, The History of Photography, London (a wider picture of Talbot, based primarily on secondary sources).
    JW

    Biographical history of technology > Talbot, William Henry Fox

  • 3 Townes, Charles Hard

    [br]
    b. 28 July 1915 Greenville, South Carolina, USA
    [br]
    American physicist who developed the maser and contributed to the development of the laser.
    [br]
    Charles H.Townes entered Furman University, Greenville, at the early age of 16 and in 1935 obtained a BA in modern languages and a BS in physics. After a year of postgraduate study at Duke University, he received a master's degree in physics in 1936. He then went on to the California Institute of Technology, where he obtained a PhD in 1939. From 1939 to 1947 he worked at the Bell Telephone Laboratories, mainly on airborne radar, although he also did some work on radio astronomy. In 1948 he joined Columbia University as Associate Professor of Physics and in 1950 was appointed a full professor. He was Director of the University's Radiation Laboratory from 1950 to 1952, and from 1952 to 1955 he was Chairman of the Physics Department.
    To meet the need for an oscillator generating very short wavelength electromagnetic radiation, Townes in 1951 realized that use could be made of the different natural energy levels of atoms and molecules. The practical application of this idea was achieved in his laboratory in 1953 using ammonia gas to make the device known as a maser (an acronym of microwave amplification by stimulated emission of radiation). The maser was developed in the next few years and in 1958, in a joint paper with his brother-in-law Arthur L. Schawlow, Townes suggested the possibility of a further development into optical frequencies or an optical maser, later known as a laser (an acronym of light amplification by stimulated emission of radiation). Two years later the first such device was made by Theodore H. Maiman.
    In 1959 Townes was given leave from Columbia University to serve as Vice-President and Director of Research at the Institute for Defense Analyses until 1961. He was then appointed Provost and Professor of Physics at the Massachusetts Institute of Technology. In 1967 he became University Professor of Physics at the University of California, where he has extended his research interests in the field of microwave and infra-red astronomy. He is a member of the National Academy of Sciences, the Institute of Electrical and Electronics Engineers and the American Astronomical Society.
    [br]
    Principal Honours and Distinctions
    Nobel Prize for Physics 1964. Foreign Member, Royal Society of London. President, American Physical Society 1967. Townes has received many awards from American and other scientific societies and institutions and honorary degrees from more than twenty universities.
    Bibliography
    Townes is the author of many scientific papers and, with Arthur L.Schawlow, of
    Microwave Spectroscopy (1955).
    1980, entry, McGraw-Hill Modern Scientists and Engineers, Part 3, New York, pp. 227– 8 (autobiography).
    1991, entry, The Nobel Century, London, p. 106 (autobiography).
    Further Reading
    T.Wasson (ed.), 1987, Nobel Prize Winners, New York, pp. 1,071–3 (contains a short biography).
    RTS

    Biographical history of technology > Townes, Charles Hard

См. также в других словарях:

  • Infra-red — Infrared In fra*red , Infra red In fra red , a. [Infra + red.] 1. (Physics) Lying outside the visible spectrum at its red end; said of rays having a longer wavelength (and thus less refrangible) than the extreme red rays, specifically those… …   The Collaborative International Dictionary of English

  • Red Horn (Zoid) — The Red Horn (also written as Redhorn) is a type of Zoid, a race of mechanical lifeforms from the fictional Zoids universe.Zoids Zoid name = Red Horn ImageName = Redhornmodel.jpg Caption = New American Release Red Horn ref|Saberwyn1 Model number …   Wikipedia

  • RTX Red Rock — Infobox VG| title = RTX Red Rock caption= deletable image caption developer = LucasArts publisher = LucasArts released = June 19, 2003 genre = Action adventure modes = Single player ratings = ESRB: Teen platforms = PlayStation 2 Nintendo GameCube …   Wikipedia

  • Rudolph the Red-Nosed Reindeer — This article is about the fictional character. For other uses, see Rudolph the Red Nosed Reindeer (disambiguation). Rudolph the Red Nosed Reindeer Rudolph the Red Nosed Reindeer character First appearance 1939 Last appearance 2001 (films and… …   Wikipedia

  • List of music videos using animation — This page lists music videos that include animation.#*4Hero Les Fleur *8 Foot Sativa Chelsea Smile *1280 Almas Pasado Animal A*ABC (How to Be A) Millionaire *Paula Abdul Opposites Attract *Aberfeldy Love Is an Arrow *a ha Take on Me (Rotoscope)… …   Wikipedia

  • Mosquito laser — The mosquito laser is a device invented by astrophysicist Lowell Wood to kill large numbers of mosquitoes to reduce the chance of people being infected with malaria.[1] Mosquitoes can carry the blood parasite of the genus plasmodium, which causes …   Wikipedia

  • Applied spectroscopy — is the application of various spectroscopic methods for detection and identification of different elements/compounds in solving problems in the fields of forensics, medicine, oil industry, atmospheric chemistry, pharmacology, etc. pectroscopic… …   Wikipedia

  • Forensic polymer engineering — The study of failure in polymeric products is called forensic polymer engineering. The topic includes the fracture of plastic products, or any other reason why such a product fails in service, or fails to meet its specification. The subject… …   Wikipedia

  • Cain and Abel — This article is about the first and second sons of Adam and Eve. For other uses, see Cain and Abel (disambiguation). Abel , Cain , and My Brother s Keeper redirect here. For other uses, see Abel (disambiguation), Cain (disambiguation), and My… …   Wikipedia

  • Archibald Low — Professor Archibald Montgomery Low (1888 September 1956) was an English Astronautics engineer, research physicist and inventor, and author of more than 40 books.Low has been called the father of radio guidance systems due to his pioneering work… …   Wikipedia

  • UV degradation — Many natural and synthetic polymers are attacked by ultra violet radiation and products made using these materials may crack or disintegrate. The problem is known as UV degradation , and is a common problem in products exposed to sunlight.… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»